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Abstract. Ill order to scale-up to real-~vorlcl  problems, planning sys-
tems must be able to rc~)lal) in order to deal with changes i~~ problerll
context. In this paper we describe hierarchical task network and operator-
based rc-planning  techniclues  which allow adaptation of a previous plan
to account for problems associated with executing plans in real-world d~
mains with uncertainty, concurrency, changing objectives. We focus on
repla!lning  which preserves elements of the original plan in order to use
xnore  reliable  domain knowledge ancl to facilitate user uuderstancling  of
I)roducr.d F,lans, We also presel,t el[ipirical  results documenting the effec-
tiveness of these techniques in a NASA antenna operations application.
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1 Introduction

As AI planning techniques move from the research environment to real-world
applications, it is critical to aclclress  the ~lecds that arise from their application
environment. S~mcificially,  many application domains are dynamic, uncertain,
concurrent, and have cllalgillg objectives. Real clomains  may be dynamic be-
cause: the worlcl can change independently of the plan being executecl; the results
of performing an action often cannot be predicted with certai~lty;  actions and
events may occur simultaneously; new goals can arise and old goals can become
unimportant as time passes. In order to adapt to such context, planning systems
must be able to replan, i.e., to appropriately aclapt and modify the current plan
to these unexpected changes in goal or state.

In this paper, we describe our replanning framework that addresses the
above issues in real-world applicatioxls.  This  framework presumes a hybricl ap-
proach using both hierarchical task network (HTN) planning (as typified by
[Erol et al 1994])  and operator-based (as typified by [Pemberthy  ancl Welcl 1992,
—.———
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Carbonel]  et al 1992]) ~Iletlmls. This  is a conlll)on  and powerful planning  archit-
ecture (SUCII as O-Plall  [Currie and late 1991], DPLAN [Cllie~l et al 1995], and
[Kanlbhampati  19’35]). We prme,lt  our general framework a.s well as its al,plica-
tion to a real application dolnaill,

In our work, we focus on replanning which preserves elements of the original
plal) instead of planning froln scratctl  fro[o tile curte~lt state for the following
reaso~ls:

–  Do?nai7Lknou)kdgc  7“e1zabdzty.  ~llcoclirlg  ofciolllaill kllowlec]ge  isilrl~)e]"fect  -
don~ain knowledge for nomiual  operations scenarios is most likely to be cor-
rect. Thus,  byre-usi[lg  &sllltlcll oftllexlort~i[lal ol)eratiolls  dolllai~l  kIlo\vledge
as possible, tile risk of encountering faulty domain knowledge is reduced.

– Operator understanding. The users who actually carry out the plan execw
tions are most familiar with nominal operations and small departures from
nominal operations are far easier for them to understand than novel action
sequences.

In this pal)er,  we first briefly clescribe  the DPI,AN  planning framework (Sec-
tion 2). We then give detailecl descriptio~is for our replanning approach for un-
expected state changes (Sectio~l 3). We present application of the replan~lin,g
approach to a real-world problem, namely the Deep Space Network (DSN)  An-
tenlla Operations domain. The empirical results  demonstrate the effectiveness
of our replanning algorith~ns (Section 4). And finally we end this paper with
discussions, related work, and conclusions.

2 Planning using hierarchical task network and
operator-based planning

Our replanning approach presumes an integrated HTN/operator  planning archit-
ecture as embodied in OPLAN ([ Currie  and Tate 1991]), DPLAN ([ChielL et al 1995])
and [Karnbharnpati  1995]. In this approach, a planner can use multiple planning
methods and reason about both activity-goals and state-goals. Activity-goals
correspond to operational or noll-operational  activities and are usually marlip-
ulated using HTN planning techniques. State-goals correspond to the precon-
ditions alld effects of activity-goals, and are achieved through operator-basecl
planning. State-goals that have not yet been achieved are also considered non-
operational. Figure 1 shows the procedures used for refining these two types of
goals. As soon as a refinement strategy is applied to an activity-goal or state-
goal, it is removed from the list of no~l-operationa]  goals. Planning is colnplete
when all (activity) goals are operational and all (state) goals have been achieved.
Further details on integrating HTN and operator-based planning paradignis  is
clescribed in [Chien et al 1995].



If g is arl Activity-Goal,

1. I)ecoln[,osr:  For each decomposition rule r ill R which can dcconlpcrsc  g, a~)[)ly r
to I)rocll[ce a IICW, ])lau 1“, If all corlstraillts  ill 1“ are consisterlt,, thel] add I“ to Q.

2. Siluple  Establisllrnellt:  For each activity-goal g‘ in ~J that can be unified wit}l g,
;i[nplc estat)lisl~  g using g‘ and I)roduce a new plan 1“. If all colistraints  in P’ are
consistent, then add 1“ to Q.

If g is a State-[;oal,

1. Stel) .4dditio1~:  F’or eac}L aclivity-goal  effect that can unify with g, add that goal to
}’ to produce a new plan [“. If the constraints irl I“ are consiskut, then add P’ to
Q.

2. Sirn~)le Fktat)lishment:  For each activity-goal g‘ in (r that has ar( effect e that can
~ unified with g, simple establish g using e and produce a new plan P’. If all
coustrair(ts  in 1“ are consistent, then acid 1“ to Q.

Fig. 1. Goal Refinement Strategies

3 Replanning for unexpected state changes

This section describes  our algorithln  for replanning when the worlcl  changes
i[~depenclently  of the plan beilLg executed. Tile input to the replanning algorithm
consists of

– tile original plan being executed (oplan),
— a list of actions already executed ( czectJted-uctzvztzes),  and
—. the current state (curre7d-shztc)3

Our approach for replanning assumes that (1) there is a default value for
each state-goal, (2) there are well-known methods (act ivities)  for establishing
tile default value for each state-goal, (3) the original plan is applicable from a
state where each relevant state-goal is at its clefault value. These assumptions
are valid itl most application do)nains, For example, in a manufacturing domain,
(1) each device (e.g. robot, clamp) has a “home” position from which the original
plan executes. The home position holds default values for state-goals relevant
to the device; (2) there are methods to bring each device to its home position,
thus establishing the clefault values for the relevant state-goals; (3) each clevice
is always at its home position  at the beginning c)f executing the original plan.

The relJlanning  algorithm then re-uses as Inuch of the original plan as possi-
ble while nli~linlizing the amount of re-execution.  The replanner returns a plan
consisting of the activities that need to be re-executed and those not executed,
as well as tile ordering constraints.

Our rel)lanuing  approach proceeds as shown in the following four steps. First,
the algorithm creates an activity whose effects reflect the changes to the plan

3 In fact, it is not necessary to know the complete current state, as long a.s we have
the ability to query whether a state-goal relevar~t to the original plan is true or false
ill tile c(lrrcl~t st ate.



caused by tlic execlltcd  activities (Figuw  3). SecollCl, tllc algoritlil[l  dcter[i~i[les
thC StatC-gOa)S IK’CCSSal’y  fOr CO1ltillllillg CX(’CutiO1l Of  thC Ph> but ~le vlOhtC’(1
due to unexpected state changes; and then applies the “reset” activities to brilig
each state-goal to its default value (Figure 4). Finally, the planner determiners
which executed activities si]ou]d be re-executed  (Figure 5). This algorithm guar-
antees that the repaired plan re-executes  all the activities tilat are necessary to
successfully achieve the to~)-level  goals.

__— —— —.
InpLIk: oplr171, the original plan

ezecuted-activities, a list of activities already executed,
current- s~ate,  the current state

output: repaired-plan, repaired plan

1, appliedGool  +– executeActivities( ezecuted-activities, op[an)
2. F/esel Goals e- resetC;oals  (oplan,  current-state, executed- actiuittes-lisf)
3. repaired-plan +- replan (opkrn,  resetG’oals,  applied~oa~)
-_—————

Fig. 2. Replanning for unexpected state changes

This rest of this sectiori gives det ailecl clcscriptions  of our replanning paradigm.
The descriptions employ a crucial concept, namely violated state-goal. A
state-goal sg is violated state-goal given an original-plan ( oplan) and a list
of executed activities (ezecuted-activities-list),  if and only if there is a protection
(protect (not sg)) from 91 to 92 in oM7L where gl is in the list of executed
activities (em.cuted-actzvitzes-l  ist), while g2is IIOt.

3.1 Execu t ing  ac t iv i t i e s

Figure 3 describes how the original plan is modified to reflect the changes in the
plan by the executed activities. The algorithm creates an activity appliedG’oal
whose effects are the state changes causecl by executing executed-activities-list.
We assume that ezecuted-activities-list is given in order of the completion of
execution of each activity. In step 1, the effects and preconditions of applied-
Goal are initialized to an empty set. In step 2, the effects of each activity in
ezecutea’-activities-list  are added to the effects of appliedGoal  in order of their
executions. An effect of an activity may overwrite the effect of a activity exe-
cuted earlier. In step 3, all the activities in ezecuted-activities-list are removed
frolo the operational goal list of the plan, because in principle they should not
have to be re-executed  again. In step 4, all the violated state-goals are locatecl
ancl acldecl back to the no[loperatiorlal  goal list of the plan because they Iieecl
to be re-achievec{in  order to ensure that theprecondition  so fthe not  executed
activities are satisfied. In step 5, appfiedGoalis  promoted before alltbe activities
that have nck been executecl yet.



—— .—
[nputs: clcc IItecf-act~vities  -list, a list o [activities already exmutecl,

o]~la?~,  original [JlalI
[)lltl)llt:  rlpp/2cd6’oal, all activity rc[,rt,serlti[lg ttlccffect ofcxcclltirlg erec[[ted-  acti~/2t2es.
12s1

1. Initialize: I;flccts(af)plied[;  o(,l)t {}, f’1cc0711fs(~If Jp12edG0al) +- {}
2. [’or each aclivitya E czecl~ted-activlttes  -[ist, do:

F’or each effect e= hffccts(a),  do:
if e E F;flcct(aljplicd(;  oal), do rmthing,
else if {not e) E F;flect(u;,j~lle(lCoal),  do:

F;flect(aT,;~liedGoal)t  (f;flect(apl~ltedC; oal)U {e})\ {(note)}
CISC 1(’ect(applied6’oal)  +- [<flect(appltedGoa[)  U {e}

3. Oper-ationalGoals(oplan)  + OperutiollalC;oals  (o~jlarl)  \ erecuted-activities  -iist.
4. lror each effect e~ l;~ects(applied~;  oal) do:

if (710t e) is a vioIated state-goal, do:
NonOperationalGoak(oplan  )+- NonOperationalGoals(oplan)LJ  (not e)

5. Forevmyactivityac  OperationalGoals(oplan),  do: adrl a after appliedG’oal
_.— _——

Fig.3. Executing activities: creatingan activity appliedG’oal to reflect the changes to
the ~~lan caused by executing the activities.

3.2 Rese t  s t a t e -goa l s

Figurc4  describes how the original plan is modified to reflect the changes in
the plan caused by resetting the vicdated state-goals. The algorithm creates an
activity Reset C;oals  for resetting the state-goals, and adds this activity into the
original plan.  In step 1, we initialize 7eset G’oals to an activity without precon-
ditions  or effects, at:cl insert it to the origirlal plan.  In step 2, we compute all
the violated state-goals clue to unexpected state changes (violatedGoaLs),  i.e.,
those that are true in the current state but not in the expected state of applying
executed activities. In step 3, we update reset Goals to account for the activities
that establish the default values of violatcdGoals. Since establishing the default
values may result in further protection violation, in step 4 we locate all such
violations amf move them back to the nonoperational goals of oplan  to reachieve
them later. In step 5, resetGoals is promoted before all the activities that have
not been executed.

3 . 3  R e p l a n n i n g

Figure  5 describes how the rep]anller  cletermines  which activities need to be
m-executed.  The algorit  11111  analyyes the protections in the origi[lal  plan, re-
executing activities that are necessary to re-establish  the protections that arc
violated by tile effects of appliedGoal  or resetGoais.  In this algorithm, the variable
rc-crecute-activities  is used to stcme the activities that neecl to be re-executecl,  or
l)recollditiol~s  that neccl to be re-achieved. This variable is used to ensure that
each precondition is re-achieved  at most once so that the replanner does not go
into an infinite loop. In essence, the re~)larlning algorithm recursively cletermines



1. [uitialize  reset 6’oak  and insert it to oplun
2. violatedGoah  t  { s t a t e - g o a l  g: g 6 cffrfent-slale,  g # eqmcted-sta~c,  and g is a

violated state-goal }
3. for each g E ViolatedG’oak, do:

I; ffects(resetGods)  +- FM’ects(reset6’oak)  U de~aull-value (g)
4. For each effect e E reset6’oak,  do:

if e is a violatccl state-goal, then
NonOperationalG’oa  k(oplan) + ~orzopcratzo~aal~ oals(o~>[all)  U (not e)

5. For every activity u = Operatiorlalcoals(o?tlart), do: add c1 after r~s~t~;oals
.——— — .

Fig. 4. Resetting goals: creating an activity resetGoals to reflect the changm  to the
plan caused by resetting the violated goals.

which executed activities are used to achicvc the protections that are violated
by appliedGoal or resetGoals, m-executes  these activities (i.e. adds them back
to the operational goals of the plan) to ensure  that tbc preconditions of tlw
re-exccutecl  activities and not-executed activities are achieved. During replann-
ing, the nonoperatiollal  goals of the p]a~i are either the preconditions of a not
executed activity that are undone by applicdCoal  or resetGoak,  or the activi-
ties that were used to achieve these preconditions in the original plan, or tile
regressed preconditions of these activities. lhe algorithm repeatedly chocj.ses a
goal, crmentGoal,  from the nonoperational goal list, and removes it froln the
list (steps ] and 2). In step 3, if currentCoal  is a precondition of an activity,
then the activity g that wzw used to achieve curre71tGoat il~ the original platl
is added to the operational (or nonoperational) goal list of oplan. In aclditiou,
for any protection from an executed activity to g, if the protection is violated
by resetOp or appliedG’oal, then the protected fact is added to tl)e nonc,lJera-
tional goal list because it should be re-achieved.  Furthermore, if the effects of
gviolate a protection from unexecuted activity to a not yet executed activity,
then theviolated  protection is also added to thenonoperational goals so that it
can be re-achieved.  In step 4, if currentGoalis an activity goal, then the goals
that currentGoal  decomposed into in the original plan are added back to the
(non) operational goal list of oplan. Finally, v’e ensure  that resetOp  is ordered
before any other activities in the repaired plan. Activities in the operational goal
list form the plan returned by the replan~ler.

The ordering constraints of the original plans are kept as they  are. Since
theonly ordering constraints the replanner adds to the original plan are to add
the resetGoals  before any activities need to be re-executed  and any activities
not yet executed, the replanning algoritl]m  does not add any inconsistency to
the original plan. Analysis of the soundness and complexity can be found in
Section 5.

For example, suppose the original plan is shown in Figure 6. The protections
in the plan are: (1) Pl: protect q frolu  A to B, (where A achieves q), and (’2)



IILIIIIIS:  oph7L, [,[m with appfirdGoal  and resct[f’rxds added  in
Out[)ut:  7fpoimf-plu71

J@“- [’w’+ ‘N7’~ffroyo’’a1  ~’0a1s ‘i! ‘la 1 ~= Lfi-I%H’YOn/J km  lo7,a160a ,$0, an M not e,,, , , c
1. current ;oal t choose a goal from N07L ;,eratzof/clGoals(o~lla71);
2, No,lOper(,tior,  alGoals(o~,lari)  + No,tO?,eratio7LalGoals(oplu71)  \ {currerLtGoal}
3. if currc7Lt G0a[ is a ~~rf,collclitio[l-~c)al,  CIO:

3.1. g 6- locate  the activity achieving cur7enf6’oal.
if g E rc-execute-acttutftfs, goto  1.

3.2. if g is an operational goal then:
{)~,cratto,,al~  oals(o~,lalb)  + Oper(Ltio,kalGoals(  OplaTL)  U {g}
else NonOperationa16’oals(oplan)  i- NonOpcratiorlalGoals(oplan)  U {9)

3.3. for every protection (protect p from gO to g), do:
if p is cleleted by reset Goals or applled  G’oa[,  and g @ re-erecute-activities,
then:
NonOperationalG’oals(oplan)  +- NonOperatiorlalG’oals(oplarl)  U {p},
re-erecute-activities  + re-execute-activities  U {p}

3.4. for every protection (protect p) from gf to g.?, awl  every effect e of g, such
that p = (7Jot e), gl E executed-activities-fist, g2 @ executed-activities-list,
p @ re-erecute-activities,  do:
Norlf)perationalGoals(oplan)  + Non@cratiorzalGoak(op!arl) U { p )
re-erecutr-activities  t re-vecute-activities  U  { p }

3.5. rc-emcute-activities  4- re-e.recute-ac~ ivities  U {g}
4. if crirrentGoal is an activity-goal, do:

for every child g of currer~t6’oal,
If g @ re-ezecate-activities, theu
if g is an operational goal, then:
OperationalGoals  (oplari) 4- 0perati07salGoals(oplan,)  U {g}

/
else Non OperationalGoals (oplan +- NonOperationalGoals(o  Ian U {g}

z ?c%;;e~$lan ?/activity a E OPerationalC;  oals op!an),  do: add u after r-e.~c Goa s

Fig. 5. [te~,lanning:  determining w}lich activities need to be re-executed.

P2: protect r froln B to D (where B achieves r). Suppose that when activities A,
E, and ~ are executed, and activity D is not yet executed, an Ul,expected  state
change OCCUIS  that results in deleting g and rfrom the state. Then activity B
neecls tobe re-executed  because protection P2 is violated by the reset operator.
Activity A also needs to be re-executed  because PI is violated by the reset
operator ancl activity B neccls to be re-executed. But activity ~ does not need
to be re-executecl.  The repaired plan is shown in Figure7.

4 Empirical Evaluation

Our replanning algorithm is a general approach which uses a domain-independent
hybrid  HTN/operator  plannitl  garchitecture.  It hmbecnteste  dinarealappli-
cation, namely, the deep space network (DSN)  antenna operation domain. This
sectiotl  describes the application domain, how the general replanning problem
nla~~s onto the real application domai]], as well as empirical test results
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Fig. 6. Au example of an original plan. Unexpected
state changes occurs when activities A, B, and C are
executed, but I) is not executed.

A
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Fig. 7. Repaired plan where activities A, B are
re-executed  upon an unexpected state change.

4.1  Planning for  Deep Space Network Antenna Operat ions

The Deep Space Network is a set of worlcl-wide  antenna networks which is nlain-
tained by the Jet Propulsion Laboratory (J PI.). Through these antennas, JPL
is responsible for providing the communications link with a multitude of space-
craft. Operations personnel are responsible for creating and maintaining this link
by configuring the required antenna subsystems and performing test ancl cali-
bration procedures. The task of creating the communications link is a manual
and time-consuming process which requires operator input of over a hundred
control directives and the constant monitoring of several dozen displays to de-
ter~nine the exact execution status of the system. Recently, a system called the
Link Monitor and Control Operator Assistant (LMCOA),  has been develo~~ccl
to improve operations efficiency and reduce precalibration  time. The LhlCOA
provides semi-automated monitor and control functions to support operating
DSN antennass. One of the main inputs to the LMCOA is a temporal depen-
dency net work (TDN).  A TDN is a directed graph that incorporates texnporal
and behavioral knowledge. This graph represents the steps required to perform a
communications link operation. In current operations, these TDNs are developed
manually. DPLAN is an AI planning system ciesigned to automatically generate



tll(w ‘1’I~Ns  lWCKI 011 i[i[)ut  irIforltmtiorl  d<wril)illg  tl)e alltenlla track  type  ancl
ttlc, [leccwsary  e{luil)nlcnt  co[lfiguratiolt.  1)1’I,AN  integrates IITN ~)lall~ling and
olmator-based  plallliil]g. Givell a set of antenna tracki[lg  goals a~ld cquip~nel)t
information, DPLAN  then generates a list of antenna operation steps that will
create a co~llrll~l]licatiolls  link with orbiting spacecraft.

4 .2  Replanning Scenarios  for  tile IISN donlain

The  DSN Arltenna  Operatiorls  clomain  is dyllarl~ic, uncertain, concurrent, and
has changing objectives. This domain is dynamic because the current state may
unexpectedly change due toexternal  events such as equipment (subsystem) fail-
ures. It is uncertain because actions may not always achieve their desired effects.
It is concurrent because actiorls pertaining to clifferent  subsystems Inay occur
simultaneously. It has changing objectives because  llewgoah? nlaybeactcled after
the execution of the original plan ha-~ already begun.  Our replanrling  system is
able to replanin  allthese scenarios. In our empirical evaluation, we focus on the
first scenario, i.e., replanning when the world changes independently of the plan
being executed.

Note that one alternative to replanning would be to simply  reset all of the
subsystems in use ancl completely restart the plan from scratch, re-achieving
all of the desired conclitions. We nanle  this approach complete-reset approach.
In thegelleral c~sethis apl~roacll  u~lclesirable beca~lseofthc  domain knowledge
reliability and ope7atoru 7~derstar~dir~gr  c~sol~sc  lcscribecli11 Section 1. Inthe DSN
antenna opmations  domain this approach is also too irlefficient  to be applicable
for two reasons:

— Complete-rese tapproach  is slow from an execution time standpoint. DSN
al~tennas are a scarce over-subscribed resource. Completely restarting to re-
cover from failures would reduce antenna availability for tracking purposes
by increasing  downtime  due to time lost during recovery from changed goals,
state changes, or failed actions. Adclitionally,  clelaying a track may result in
lost clata becauseit  isgenerally infemibleto alter the spacecraft command
sequence on short notice.

—— L’omplete-reset approach involves resetting (powering off and then back on)
all of the subsystems. This power cyclil)g  of the hardware introduces unnec-
essary  wear on tile expensive and scarce DSN subsystems.

Thus our replanning algorithm re-uses  as much of the original plan as pos-
sible while millinlizing  the amount  of re-execution by restoring the subsystem
tc) ;L functioning state (generally through resetting the subsystem) and by re-
acilicving  relevant states before continuing plan execution.



4 .3  Empi r i ca l  r e su l t s

In Sectioll  1, wc stated tl~at rcphuining  by reusing the llo]nillal pku~ }vas ctc-
sirable  because the domain knowledge for no~ninal operations is Illore reliableq
. ]n order to verify this clain~, we tested our replanning algorithm 011 a series
of replanni[l.g  problelns.  In these ex~wrilnellts, the replalinillg  algorith[n  usecl
knowledge developed for nominal opcratiolw  to re~)lall fol 5 probIerLls for each of
the 3 types of replanning scenarios: subsystelll  failure, additional service request,
and activity failure, to produce atotalof 15 plaus. A domain expert validated 6
plans randomly selected from the 15repairecl  pla~)s generated  byourreplalll~m.
The limited size of the verified test set is due to tile significant effort required
tortlarillally verify aT1)Na!~d tl~escarcity  of the DSN doll~aill  exl~erts.  Tile (lo-
main expert considered all the 6 examined replans to be correct (i.e they would
achieve the goals from the replan state). These results are summarized in Table
1.

E===”- - I :]#of plans #of plans where planeZPc,, = p~~~ZCPlanner % correct repaired pla]i=
10070

Table 1. Expert judged correctness of the repaired plan

The second criterion for evaluation is that it is critical to minimize executicm
time of the TDNs.  FrcmI the replanning point of view, this means rninitnizilig
the number of activities that need to be re-ext’cuted. For this, we compared the
number of activities that are re-executed  in the repaired plan versus the corre-
sponding number in ttle plans generated using complete brute  force replalLl~ing
(i.e. resetting everything and starting from scratcl,).  In the 15 replanning cases,
the average number of activities in the original TDN is 13.8, the average number
of activities executed when the failure occurs is 8.07, ancl the average number
of activities re-executed using our replanning algorithm is 1.13. We see that tile
proportion of re-executed activities using our replanning algorithm is only 14%
(1 .13/8.07) of those using brute force - resetting every subsystem ancl start-
ing from scratch. This demonstrates that the repaired plans generated by our
replanner are significantly more efficient thall brute-force replanning. Taljle 2
summarizes the empirical results for repaired plan efllciel)cy.

5 Discussions

In this section, we analyze some properties of the our replanning a]gorithnl

4 For exalnple, cornrnon]y  there is an assumed execution context for an operator in
nominal usage which is not explicitly represented ill operator preconditions.



Table 2. Efficiency  of the repaired plan

5.1 Terminat ion and soundness

Our  replanning algorithm for determining which activities reqtlire  re-exec(ltiorl
(described in Figure 5) will terminate because: (1) in the worst case when all the
executed activities are aclded back to the operational goal list of the plan, the
nonol)erational  goals of the plan will twernpty; (2) when a violated precondition
isadded bac.kto  thenonoperational  goal list, it takes afiniten umberofiterations
to add the executed activity that achieves this precondition; and (3) every goal
list is allowed to be added back to the (non) oj)erational  goal list at most once.
Thus the complexity of the replanning algorithm is O(n) where n is the length
of the original plan.

Our replanning algorithms are soutld a.wurning that the domain knowledge
is correct. The soundness proof follows from analyzing the algorithnl  in Figure 5
hy sl~owing:  (1) every possible violation of the previously achieved state is ident-
ified in the algorithm; (2) every violated state is re-established by re-executing
activities in the original plan that estaMislled  these conclitions. Since the orig-
inal plan is sound, the replannilig  algorithm ensures that there are no violated
protcctior~s ill the repaired plan, and th{ls  is souncl.

5 . 2  Cenera]ity

Out replanning algorithm is based on protection analysis. ‘1’he  protections in our
plans are derived from the the preconditions and effects of activities in the plan.
Thus our replanning approach is applicable to all planners that maintain such
protections, including [Pemberthy  atld Weld 1992, Carbonell  et al 1992, Chien et al 1995].

We also learnecl that planners with only hierarchical decomposition capabil-
it y are insufficient for replanning ul)less  proper protections are specified. Most
decompositio~lal  rules only specify how to decompose a high level activity to low
level activities and the ordering constrai!lts  anlong them. Protections are not re-
quirecl to generate initial correct plans, altl)ough  most IITN planners allow and
elicourage  the s~)ecification  of protections. In contrast, operator-based planning
requires tl~at [J1@XMIClitiO1ls and effects of each activity be encocled  explicitly in
order to function properly. Protections are gel~erated  by the planner automat-
ically froln the preconditions and effects, We believe t,llat since protections are
essential for replanning, operator-based planning is more natural for replanning
purposes.



6 Related Work

One situilar  replanning system  is the CHEF  system [Hammond 1989].  In CHEF,
failures are all clue to unforsecn  goal irlteractioms  The CHEF systmn classifies
a failure, infers a missil~g  goal, and applies a critic to repair tllc plaI1. Tliis
problem differs from our replanning problcl]l - i~~ our case tt~c problem is )lot
an unrecognized goal interaction but rather a clmnge in the I)roblcm state or
goals. Thus, in our replannil~g prot)lem one (inefficient) alternative is to si[nply
re-execute  the entire plan.  This would be unwise in the CHEF replanning context
because it is assumed the plan would sim~)ly  fail agaiil. In our replanning context,
the desired outcome is to recover so as to achieve the possibly alterec{ goal set
while retaining as much of the original plan a.s possible.

SIPE [Wilkins 1988] also performs replanning in response to unexpected ex-
ternal events that change the state. SIPE first classifies the failure type and then
uses this classification to apply a critic to repair the plan. Again, our replan-
ning problem is constrained such that resetting the subsystems and re-executing
the entire plan is a viable alternative - the goal is to minimize unnecessary I e-
execution. In SIPE’S  replanning scenario arbitrary replanning may be required.
Thus, SIPE  uses specific information in the form of critics. In our replanning
problem the etnphasis  is on replanning to re-use the original plan, thus our ap-
proach focusses on re-establishing  conditions using portions of the original plan.

Other previous work in the case-based reasoning or analogy work concen-
trates on adapting a case for a similar protjlem to the new problem situation
[Veloso  1992, Karnbhampati 1990]. ‘1’heir  algorithms involve adding and cfelet-
ing activities from the original plan based on an analysis of the applicability of
the dependencies to the current problem context. This work differs from ours in
two ways. First, in our approach, we handle situations where part of the plali
is likely to have been executed when repla~l[ling occurs. Thus replanning must
account for the altered initial state. Second, in our approach, minimizing the
number of re-executed activities is desirable.

Previous work in the framework of i~ltegrating  planning, executing, arid re-
planning [Knoblock 1995, Drabble  1995] relies on the domain designer to provide
repair methods for each type of failure. In the replanning problems we are ad-
dressing, it is impractical to specify a repair method for each specific class of
failure. For example, in the DSN domain, there may be many different kinds
of failures, failures may happen at almost any time during execution, there are
tens of subsystems, etc. Hence, we have clesigned our algorithms to WOI k from
more general information (such as tile execution status of activities). However,
we still require certain slmcific information (e. g., the relevant subsystem to leset
fcm an activity failure).

7 Future Work

This paper has presented a general framework for replanning required by changes
in probleln  context. However, there are several areas for future work which are



clrivell by operat  iolial rcxluirclnellts of our target  :~pp]icatioll dolrlaili of DSN an-
tenna o~wratiolls. q’his  palmr represents a first step towards tackling this conl-
plex ~jroblmtl  and tllerc  arc numerous outstandirlg  issues which ~emain to be
,addrcss  cd. We describe several of these issues t~clow.

In tile DSN, there is a tradeoff of the granularity of representing the activities,
The  activities are the lowest Icvel pri[nitives  that ttie planner reasons about:
each activity may contain tens of directives (collllnallds).  Solnetimes  during an
execution failure, instead of re-executing  a whole activity, it is possible to only
re-execute  a subset of all the directives in the activity, so that the total execution
time ~nay be shortened. To capture this l)lan repair lcnowleclge,  we can break all
activity C1OWI1  to a nurnbcr  of activities, but  then the planner must reason at
a lower level of abstraction. This xnay result in a less maintainable knowledge
}>ase for the planner and degracled planner performance (planning speed). One
area for future work is to better understand the tradeoffs and implications of
selecting a particular level of abstraction for the pla~lner.

In the DSN clonlain, actions take time. If the recovery actions take all ex-
tended amount of time, there may Ilot be enough time to perform a planned
ecluiprnent performance test M well a.s starting the acquisition of data at the
recluirecl time. In this case, a tradeof~ must be evaluatecl.  For example, should
the data be captured witbout doing the performance test? Or would the data
be useless without the performance test? 13nclowing  a planning system to rea-
son abc)ut  the utility of these differing courses of action to take the best overall
course of action  is a long-term goal.

In the DSN clomain,  during execution, some subsystems may be removed
due to competing requests. Usually, these subsystems arc not neecled any more
by the task, ar]cl are  requested to be used by other tasks. What is the proper
way to remove the equipment from the system? How do we unlink it with other
subsystems? Enhancing the planning system to be able to reason about these
types of te[nporal  constraints and rcclumts (using a more expressive temporal
representation) is an area for future work.

Finally, in the DSN, the state of each of the subsystems is complex and con-
tains a large amount of informatio~l. .41though in principle, all relevant state in-
for~nation can be illferred  by an expert o~)erator,  in practice this is cluite difficult.
How can the planning system recover from failures in a way so as to reduce the
need for operators to perform complex, titIle-colls[ltLli~lg  and knowledge-intensive
diagnoses?

8 Conclusions

In order to scale-up to real-worlcl  problems, planlling  systems must be able to
replan in order to deal with changes in problem context. This paper  has de-
scribed hierarchical task ILetwork and operator-based re-planning  techniques to
adapt a previous pla!]  to account for: state changes, aclcled new goals, and failed
actions. This approach attempts to preserve elements of the original plan in
order to utilize more reliable no]nirla] operations domain knowledge and to facil-
itilt(~ Ilser ll[lci(>rst:l~ldi~lg. I~L adclition, the re~)la~lning lnethocls attempt to avoid



ullllccessary  re-acllicvelIlellt  of goals, We nave also presented em[)irical lesults
documenting the effcctivcnirxs of these techniques it] a NASA antenna o~)eratio~)s
application.
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